These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heterogeneity of pig kidney Na,K-ATPase as indicated by ADP- and ouabain-binding stoichiometry. Author: Jensen J. Journal: Biochim Biophys Acta; 1992 Sep 21; 1110(1):81-7. PubMed ID: 1327140. Abstract: A centrifugation method has been used for determination of [14C]ADP and [3H]ouabain binding to Na,K-ATPase from pig kidney with high specific activity. In the presence of K+, the fit of the [14C]ADP binding data to a two-site model gives a component with high affinity which accounts for 12 +/- 2% of the total sites. The figure is significantly different from 50%, i.e., two components of equal size cannot be assumed. This contrasts with a ratio between the sites of 1:1 obtained by the rate dialysis technique. The discrepancy may be due to the fact that the centrifugation method enables bound ADP to be determined at lower concentrations of free ligand. [3H]Ouabain binding in the absence of Na+ is compatible with a straight line in a Scatchard plot if the isotope is purified shortly before use. An unspecific binding of ouabain can be neglected if the concentration of free ouabain is not too high. In the presence of Na+, the isotherms become upward concave. An analysis of the binding data gives a 19:81% division, although equilibrium is not quite attained. This is a maximum value because the lack in equilibrium will be most pronounced at the small values of free ouabain. Thus the ADP-binding studies are supported. The finding here is in some agreement with the semiquantitative immunoassay showing that pig kidney enzyme contains the isoenzymes alpha 1, alpha 2 and alpha 3 in a proportion of 84:12:4, respectively. Determination of ADP- and ouabain-binding site stoichiometry favours a theory with one substrate site per (alpha beta)2.[Abstract] [Full Text] [Related] [New Search]