These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding receptors for alpha-L-fucosidase in human B-lymphoid cell lines.
    Author: Dicioccio RA, Miller AL.
    Journal: Glycoconj J; 1992 Feb; 9(1):56-62. PubMed ID: 1327338.
    Abstract:
    An established mechanism for directing newly made acid hydrolases to lysosomes involves acquisition of mannose 6-phosphate residues by the carbohydrate portion of acid hydrolases followed by binding to specific membrane-bound transport receptors and delivery to lysosomes. Two distinct phosphomannosyl receptors (CI-MPR and CD-MPR) have been identified. Alternative mechanisms for trafficking acid hydrolases exist. This report examines means for the possible receptor-mediated intracellular transport of alpha-L- fucosidase in lymphoid cells. The binding of alpha-L-fucosidase to intact cells and to total cell membrane preparations, in conjunction with immunoassays of solubilized membrane preparations, revealed the presence of CI-MPR and CD-MPR on human lymphoid and fibroblast cell lines. The mean level of CD-MPR in nine lymphoid cell lines was 7.2-fold greater than CI-MPR. The mean level of CI-MPR in two fibroblast lines was 3.8-fold greater than CD-MPR. The mean content of CI-MPR was 19.5-fold greater in the fibroblasts than in the lymphoid cells. The CD-MPR content of fibroblasts and lymphoid cells was nearly equivalent. Among these cell lines were a fibroblast and a lymphoid line from the same individual. These results indicate that human B-lymphoid cells are deficient in CI-MPR and suggest that modulation of expression of CI-MPR and CD-MPR in lymphoid cells differs from that in fibroblasts, including cell lines with identical genomes. No specific receptor capable of binding alpha-L-fucosidase independent of mannose 6-phosphate was demonstrable, despite published results that support the existence of a mannose 6-phosphate independent trafficking mechanism in lymphoid cells for this enzyme.
    [Abstract] [Full Text] [Related] [New Search]