These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of full-length and polymerase chain reaction-derived partial-length Gottfried and OSU gene 4 probes for serotypic differentiation of porcine rotaviruses.
    Author: Rosen BI, Parwani AV, Gorziglia M, Larralde G, Saif LJ.
    Journal: J Clin Microbiol; 1992 Oct; 30(10):2644-52. PubMed ID: 1328281.
    Abstract:
    To determine the VP4 (P type) specificity of porcine rotaviruses, full- and partial-length gene 4 probes were produced from cloned Gottfried and OSU porcine rotavirus genomic segment 4 cDNAs. The gene 4 segments from the prototype Gottfried (VP7 serotype 4) and OSU (VP7 serotype 5) porcine rotavirus strains were selected for study because of their distinct P types and the occurrence of rotaviruses with similar serotypes among swine. Partial-length gene 4 cDNAs were produced and amplified by the polymerase chain reaction (PCR) and encompassed portions of the variable region (nucleotides 211 to 612) of VP8 encoded by genomic segment 4. The hybridization stringency conditions necessary for optimal probe specificity and sensitivity were determined by dot or Northern (RNA) blot hybridizations against a diverse group of human and animal rotaviruses of heterologous group A serotypes and against representative group B and C porcine rotaviruses. The PCR-derived gene 4 probes were more specific than the full-length gene 4 probes but demonstrated equivalent sensitivity. The Gottfried PCR-derived probe hybridized with Gottfried, SB2, SB3, and SB5 G serotype 4 porcine rotaviruses. The OSU PCR-derived probe hybridized with OSU, EE, A580, and SB-1A porcine rotaviruses and equine H1 rotavirus. Results of the hybridization reactions of the PCR-derived gene 4 probes with selected porcine rotavirus strains agreed with previous serological or genetic analyses, indicating their suitability as diagnostic reagents.
    [Abstract] [Full Text] [Related] [New Search]