These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca(2+)-pump, reduces Ca(2+)-dependent K+ currents in guinea-pig smooth muscle cells. Author: Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Journal: Br J Pharmacol; 1992 Sep; 107(1):134-40. PubMed ID: 1330156. Abstract: 1. Effects of cyclopiazonic acid (CPA), a specific inhibitor of the Ca(2+)-ATPase in sarcoplasmic reticulum (SR), on membrane ionic currents were examined in single smooth muscle cells freshly isolated from ileal longitudinal strips and urinary bladder of the guinea-pig. 2. Under whole-cell clamp, CPA (1-10 microM) reduced peak outward current elicited by depolarization in a concentration-dependent manner. The concentration of CPA required for 50% decrease in the peak outward current was approximately 3 microM in ileal cells under these conditions. The current reduced by CPA recovered by more than 70% after washout. 3. The transient outward current elicited by application of 5 mM caffeine at a holding potential of -50 mV in Ca2+ free solution was almost abolished, when the preceding Ca(2+)-loading of the cell in a solution containing 2.2 mM Ca2+ was performed in the presence of 3 microM CPA. 4. When the Ca(2+)-dependent K+ current (IK-Ca) and Ca2+ current (ICa) were inhibited by addition of Ca2+, the remaining delayed rectifier type K+ current was not affected by 10 microM CPA. When outward currents were blocked by replacement of K+ by Cs+ in the pipette solution, the remaining ICa was not affected by 10 microM CPA. 5. CPA (10 microM) did not affect the conductance of single maxi Ca(2+)-dependent K+ channels or the Cd(2+)-dependence of their open probability in both inside- and outside-out configurations. 6. These results indicate that IK-Ca is selectively and strongly suppressed by CPA.Its effects may be attributed to a decrease in Ca2"-uptake into SR, resulting in a decrease in Ca2"-induced Ca24 release which is triggered by Ca24 entering through voltage-dependent Ca24 channels and therefore less activation of these K channels.7. CPA may be extremely valuable pharmacological tool for investigating intracellular Ca24 mobilization and ionic currents regulated by intracellular Ca24.[Abstract] [Full Text] [Related] [New Search]