These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogen and methane breath tests for evaluation of resistant carbohydrates. Author: Rumessen JJ. Journal: Eur J Clin Nutr; 1992 Oct; 46 Suppl 2():S77-90. PubMed ID: 1330532. Abstract: This review considers in detail the background, principles, techniques, limitations and advantages of the hydrogen and methane breath tests. Resistant food carbohydrates, defined as dietary carbohydrates partly or totally escaping small intestinal assimilation, are fermented in the human colon. This results in production of H2, CH4 and volatile fatty acids. Increased colonic H2 production is a sensitive index of increased carbohydrate fermentation, and a rather constant fraction of the colonic H2 production is excreted by the lungs. It is therefore possible to assess mouth-to-caecum transit times as well as to estimate absorption capacities for several types of resistant carbohydrates by means of H2 breath tests. A prerequisite for correct interpretation is that procedures for determination of H2 concentrations and for breath sampling and storage are carefully validated and standardized. Due to the large interindividual variations of hydrogen excretion, unabsorbable standards should be used. The intraindividual variations of H2 production/excretion and differences in fermentability of different carbohydrate substrates only allow for semiquantitative estimates of malabsorbed amounts of some carbohydrates. Methane breath tests may supplement the information gained from hydrogen measurements, but further evaluations are needed. The hydrogen breath technique is rapid, simple and non-invasive as well as non-radioactive. It may be carried out in a large number of intact individuals under physiological circumstances, and it may be used for studies in children and for field studies. Compared to classical tolerance tests the hydrogen breath test is more sensitive. It is concluded that the hydrogen breath test is a useful tool for investigations of dietary carbohydrates.[Abstract] [Full Text] [Related] [New Search]