These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Storage conditions of blood samples and primer selection affect the yield of cDNA polymerase chain reaction products of hepatitis C virus.
    Author: Cuypers HT, Bresters D, Winkel IN, Reesink HW, Weiner AJ, Houghton M, van der Poel CL, Lelie PN.
    Journal: J Clin Microbiol; 1992 Dec; 30(12):3220-4. PubMed ID: 1333489.
    Abstract:
    We have noticed that suboptimal specimen processing and storage conditions may cause false-negative results in the detection of hepatitis C virus (HCV) RNA in plasma or serum. To establish the influence of specimen handling in a serological laboratory on the rate of detection of HCV RNA by the cDNA polymerase chain reaction (cDNA-PCR), we tested routine serum samples and fresh-frozen plasma samples from the same bleeding from confirmed anti-HCV-positive blood donors. When primers from the NS3/NS4 region were used, HCV RNA was detected in fresh-frozen plasma from 67% of the donors, whereas positive results were obtained with only 50% of the serum samples that had been subjected to routine serological procedures. Analysis of the same samples with primers from the highly conserved 5'-terminal region (5'-TR) revealed an HCV RNA detection rate of 92% for both the routine and the fresh-frozen samples. However, the yield of the amplification product in routine samples was strongly reduced compared with that in fresh-frozen plasma. Comparison of both primer sets for cDNA-PCR showed that the 5'-TR primer set was 10- to 100-fold more effective in detecting HCV RNA. We also analyzed the effect of storage of whole EDTA-blood and serum at room temperature and at 4 degrees C on the yield of the amplification product. A rapid decline in detectable HCV RNA of 3 to 4 log units was observed within 14 days when whole blood and serum were stored at room temperature. By contrast, no perceptible reduction in the cDNA-PCR signal was found in freshly prepared serum stored at 4 degrees C.
    [Abstract] [Full Text] [Related] [New Search]