These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of dietary calcium on tibial dyschondroplasia. Interaction with light, cholecalciferol, 1,25-dihydroxycholecalciferol, protein, and synthetic zeolite. Author: Edwards HM, Elliot MA, Sooncharernying S. Journal: Poult Sci; 1992 Dec; 71(12):2041-55. PubMed ID: 1335146. Abstract: A series of experiments was conducted to investigate interactions of dietary calcium levels with ultraviolet light, cholecalciferol (D3), 1,25-dihydroxycholecalciferol [1,25-(OH)2D3], dietary protein, and a synthetic zeolite on the development of tibial dyschondroplasia in broilers. A basal diet low in calcium, high in phosphorus and chloride, and known to promote a high incidence of tibial dyschondroplasia was used. The chicks received ultraviolet radiation from fluorescent lights in addition to 1,100 ICU/kg (27.5 micrograms/kg) of D3 in the basal diet when these were not experimental variables. Regardless of whether the calcium level was low (.65%) or adequate (.95%), the incidence of tibial dyschondroplasia was significantly lower in chicks receiving ultraviolet radiation or dietary vitamin D3 levels well above the required amounts. The addition of 10 micrograms/kg of 1,25-(OH)2D3 to the diet when calcium levels varied from .45 to .95% resulted in a reduction in the incidence of tibial dyschondroplasia and increased tibial bone ash when dietary protein levels were 18 or 22%. The addition of 1% synthetic zeolite to the diet did not influence the incidence of tibial dyschondroplasia when the diet contained widely varying dietary calcium levels (.65 to 1.81%) and .73% phosphorus.[Abstract] [Full Text] [Related] [New Search]