These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [The role of enkephalinase (neutral endopeptidase) in neurogenic inflammation of the respiratory tract].
    Author: Djokić TD.
    Journal: Glas Srp Akad Nauka Med; 1992; (42):107-21. PubMed ID: 1340478.
    Abstract:
    In addition to the cholinergic and adrenergic nervous systems, a new noncholinergic and nonadrenergic nervous system has recently been described, involving the afferent sensory nerves in the airways. Many irritants (dusts, chemicals) stimulate these sensory nerves to release neuropeptides. Among these neuropeptides, the "tachykinins" exist in sensory nerves of airways (substance P, neurokinin A). These tachykinins have the ability to affect multiple cells in the airways and to provoke many responses including smooth muscle contraction, mucus secretion, plasma extravasation and neutrophil adhesion. This series of effects is termed "neurogenic inflammation". Using the respiratory tract as experimental model, it has been shown that: a) substance P (SP) is widely distributed in afferent fibers in the vagus, b) SP-immunoreactivity has been demonstrated in the epithelium, in airway smooth muscle, near blood vessels and submucosal glands, c) substance P and other tachykinins are released from sensory nerve terminals during stimulation electrically and by capsaicin, d) local administration of substance P mimics the effect of sensory nerve stimulation, e) smooth muscle contraction, gland secretion and plasma leakage, normally induced by nerve stimulation or noxious stimulus, are absent in tissues pretreated with the substance P depleting agent capsaicin or with tachykinin antagonists. These findings indicate that peptidergic nerve fibers are involved in the local regulation of tone of smooth muscle, regulation of blood flow, vascular permeability, and mucus secretion. We released that degradative mechanisms could play an important role in modulating tachykinin effects, just as acetylcholinesterase modulates effects of acetylcholine released from nerve terminals. We discovered that a membrane-bound enzyme called enkephalinase (also called neutral endopeptidase, EC 3, 4, 24, 11), located on specific cells that contain tachykinin receptors, modulate the action of tachykinins by cleaving and thus inactivating them. Our studies demonstrate that viral infection or cigarette smoke potentiate various effects of tachykinins by decreasing tissue enkephalinase activity. Thus, down-regulation of enkephalinase activity in specific tissues can modify the extent of neurogenic inflammation, and this modification could be important in the pathogenesis of diseases in airways and other tissues that contain tachykinins.
    [Abstract] [Full Text] [Related] [New Search]