These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of the Bacillus subtilis glnRA repressor with operator and promoter sequences in vivo.
    Author: Gutowski JC, Schreier HJ.
    Journal: J Bacteriol; 1992 Feb; 174(3):671-81. PubMed ID: 1346263.
    Abstract:
    In vivo dimethyl sulfate footprinting of the Bacillus subtilis glnRA regulatory region under repressing and derepressing conditions demonstrated that the GlnR protein, encoded by glnR, interacts with two sites situated within and adjacent to the glnRA promoter. One site, glnRAo1, between positions -40 and -60 relative to the start point of transcription, is a 21-bp symmetrical element that has been identified as essential for glnRA regulation (H. J. Schreier, C. A. Rostkowski, J. F. Nomellini, and K. D. Hirschi, J. Mol. Biol. 220:241-253, 1991). The second site, glnRAo2, is a quasisymmetrical element having partial homology to glnRAo1 and is located within the promoter between positions -17 and -37. The symmetry and extent of modifications observed for each site during repression and derepression indicated that GlnR interacts with the glnRA regulatory region by binding to both sites in approximately the same manner. Experiments using potassium permanganate to probe open complex formation by RNA polymerase demonstrated that transcriptional initiation is inhibited by GlnR. Furthermore, distortion of the DNA helix within glnRAo2 occurred upon GlnR binding. While glutamine synthetase, encoded by glnA, has been implicated in controlling glnRA expression, analyses with dimethyl sulfate and potassium permanganate ruled out a role for glutamine synthetase in directly influencing transcription by binding to operator and promoter regions. Our results suggested that inhibition of transcription from the glnRA promoter involves GlnR occupancy at both glnRAo1 and glnRAo2. In addition, modification of bases within the glnRAo2 operator indicated that control of glnRA expression under nitrogen-limiting (derepressing) conditions included the involvement of a factor(s) other than GlnR.
    [Abstract] [Full Text] [Related] [New Search]