These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. Author: Moser R, Fehr J, Bruijnzeel PL. Journal: J Immunol; 1992 Aug 15; 149(4):1432-8. PubMed ID: 1354235. Abstract: The mechanism leading to selective accumulation of eosinophils in allergic inflamed tissue is still unknown. In this article, transendothelial migration of circulating eosinophils from normal and allergic individuals is characterized by means of human umbilical vein endothelial cells cultivated on extracellular matrix from human fibroblasts. IL-4 pretreatment of these vascular constructs induced adherence and impressive layer penetration of eosinophils but not of neutrophils. For layer penetration, blood eosinophils from nonallergic donors needed in vitro priming by granulocyte/macrophage-CSF, IL-3, or IL-5. In contrast, freshly isolated blood eosinophils from a group of patients with atopic dermatitis spontaneously penetrated IL-4-activated vascular constructs. The here described selective pathway of eosinophil transmigration was 1) specifically induced by IL-4; 2) inhibited by the IL-4 specific, neutralizing mAb 8F12; and 3) dependent upon endothelial mRNA synthesis. Both eosinophil adherence and transmigration were present at an IL-4 concentration of 1 U/ml. The effect of endothelial preincubation with IL-4 culminated at 16 h and persisted up to 48 h. A linear increase of subendothelial accumulating eosinophils was observed within 2 h, reaching almost 100% after 4 h of coincubation. From inhibition experiments using different mAb, we conclude that the integrins CD11a/CD18, CD11b/CD18, and very late Ag-4 (CDw49d/CD29) are involved in this selective pathway of eosinophil transmigration. Taken together, this study demonstrates a novel mechanism which allows in vitro or in vivo primed eosinophils to leave the vascular compartment without influencing emigration of neutrophils.[Abstract] [Full Text] [Related] [New Search]