These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutant genes of cytochrome P-450IID6, glutathione S-transferase class Mu, and arylamine N-acetyltransferase in lung cancer patients.
    Author: Roots I, Brockmöller J, Drakoulis N, Loddenkemper R.
    Journal: Clin Investig; 1992; 70(3-4):307-19. PubMed ID: 1355678.
    Abstract:
    Epidemiological studies suggested a protective effect of certain phenotypes of polymorphic foreign-compound-metabolizing enzymes in some types of cancer. Poor metabolizers (PM) of debrisoquine 4-hydroxylase (cytochrome P-450IID6, CYP2D6) were found to be underrepresented among patients with lung cancer. Recent advances in molecular genetic characterization of CYP2D6, glutathione S-transferase (GST) class Mu, and arylamine N-acetyltransferase enabled genotypical determination of mutant alleles in lung cancer patients. Restriction fragment length polymorphism (RFLP) with a cDNA gene probe of CYP2D6 was analyzed in 79 lung cancer patients who were phenotyped with debrisoquine. Mutant alleles were detected by allele-specific polymerase chain reaction (PCR). In the same individuals, genotype of GST class Mu was analyzed by PCR and correlated with ex vivo activity of glutathione conjugation towards trans-stilbene oxide. RFLP patterns allowed discrimination between the slow and fast genotype of N-acetyltransferase as well as the heterozygotes. Three phenotypical PMs of debrisoquine (3.8%) were confirmed by PCR and RFLP. No PM could be unambiguously recognized only by RFLP patterns. The PMs were characterized by PCR and RFLP as carriers of the 29B/29B (n = 1), 29A/29B (n = 1), and 29A/44 (n = 1) mutant alleles. Higher debrisoquine hydroxylase activities were found in the homozygous EMs, who possess two active genes, as compared to heterozygous EMs, who have only one active gene. The patients with phenotypically impaired GST Mu activity were confirmed as such by PCR. A complete correspondence between phenotyping of N-acetyltransferase (with caffeine) and genotyping was found. The new genetic techniques proved to be powerful tools for molecular-epidemiological studies aimed at establishing host factors of cancer susceptibility.
    [Abstract] [Full Text] [Related] [New Search]