These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Studies of 1-deoxy-D-fructose, 1-deoxy-D-glucitol, and 1-deoxy-D-minnitol as antimetabolites. Author: Dills WL, Meyer WL. Journal: Biochemistry; 1976 Oct 05; 15(20):4506-12. PubMed ID: 135580. Abstract: 1-Deoxy-D-fructose was synthesized in 27% yield from D-glucosamine in a three-step procedure involving Raney nickel desulfurization and oxidative deamination with 3,5-di-tert-butyl- 1,2-benzoquinone applied to appropriate intermediates. 1-Deoxyfructose and its reduction products, 1-deoxyglucitol and 1-deoxymannitol, were tested as substrates and antimetabolites. For sheep liver glucitol dehydrogenase, the Km is 53 mM for 1-deoxymannitol, were tested as substrates and antimetabolites. For sheep liver glucitol dehydrogenase, the Km is 53 mM for 1-deoxyglucitol and 89 mM for 1-deoxymannitol with maximal velocities 33 and 18%, respectively, of that with glucitol as substrate. These results require substantial revision of the long-accepted polyol substrate structural requirements for this enzyme which have been reported to include a 1-hydroxy group and a cis-2,4-dihydroxy configuration. Km is 614 and 280 mM for yeast and muscle hexokinases, respectively, acting on 1-deoxyfructose; maximal velocities are 2 and 5% of those obtained with fructose. 1-Deoxyfructose 6-phosphate is a competitive inhibitor of phosphoglucose isomerase with a Ki of 1.1 mM; this is about the same as Km for the natural substrates. It is also an effective inhibitor of phosphofructokinase but does not alter the cooperativity of the enzyme interaction with fructose 6-phosphate nor exhibit cooperativity in its own interaction therewith. These results suggest that the 1-hydroxy group is not crucial for binding but does play a role in the cooperative interactions of this allosteric protein. At equivalent concentrations, 1-deoxyfructose is somewhat better than 2-deoxyglucose as an inhibitor of erythrocyte glycolysis; the 1-deoxypolyols are ineffective. All three 1-deoxy compounds are readily, though incompletely, absorbed from the intestine of mice; most of the absorbed dose appears in the urine unchanged within 24 h. Whether given by oral or intraperitoneal routes, 2 to 6% of administered deoxypolyol or deoxyketose appears in the urine as ketose or polyol, respectively. No acute toxic effects or growth retardation are noted for any of the 1-deoxy analogues when given to mice at levels where 2-deoxyglucose has such effects. The properties of these 1-deoxy sugar analogues recommend them for further studies of enzyme mechanisms, for metabolic studies, and for testing as therapeutic agents against such organisms as certain mammalian parasites with heavy reliance on glycolysis.[Abstract] [Full Text] [Related] [New Search]