These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cyclophosphamide resistance in medulloblastoma.
    Author: Friedman HS, Colvin OM, Kaufmann SH, Ludeman SM, Bullock N, Bigner DD, Griffith OW.
    Journal: Cancer Res; 1992 Oct 01; 52(19):5373-8. PubMed ID: 1356617.
    Abstract:
    Mechanisms of tumor resistance to 4-hydroperoxycyclophosphamide (4-HC) were studied by using a panel of human medulloblastoma cell lines either passaged in the laboratory for resistance to 4-HC or established from tumors showing clinical resistance to cyclophosphamide. Multiple distinct mechanisms of resistance were demonstrated. Daoy (4-HCR), a line that was 6-fold more resistant than Daoy, contained elevated levels of aldehyde dehydrogenase (ALDH). Most of the difference in sensitivity between the Daoy (4-HCR) and Daoy cell lines was abolished when 4-HC was replaced with phenylketocyclophosphamide, a 4-HC analogue that cannot be detoxified by ALDH. Thus, elevated levels of ALDH appear to play a role in the resistance of Daoy (4-HCR). Several of the cell lines [D283 Med (4-HCR), D341 Med (4-HCR), Daoy (4-HCR), D458 Med] contained elevated levels of glutathione (GSH). No changes in glutathione-S-transferase activity or isozyme pattern were observed, but in two of these three lines, the elevation in GSH was accompanied by elevated levels of gamma-glutamyl transpeptidase. To confirm the role of elevated GSH content in 4-HC resistance, the sensitivity of the cell lines to 4-HC was repeated after depletion of GSH by treatment with L-buthionine-S,R-sulfoximine. In medulloblastoma cell lines without other mechanisms of resistance, a linear relationship was seen between GSH content and resistance to 4-HC. Moreover, cells with GSH content greater than 5 nmol/mg protein and no other overriding mechanism of resistance could be sensitized to 4-HC treatment with L-buthionine-S,R-sulfoximine. Finally, D283 Med (4-HCR) cells had mild elevations in both ALDH and GSH content, but were resistant to phenylketocyclophosphamide and were not significantly sensitized by L-buthionine-S,R-sulfoximine. This cell line appears to demonstrate a third mechanism of resistance to 4-HC. These results suggest that 4-HC resistance in medulloblastoma can be multifactorial.
    [Abstract] [Full Text] [Related] [New Search]