These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic AMP, but not basic FGF, increases the in vitro survival of mesencephalic dopaminergic neurons and protects them from MPP(+)-induced degeneration. Author: Hartikka J, Staufenbiel M, Lübbert H. Journal: J Neurosci Res; 1992 Jun; 32(2):190-201. PubMed ID: 1357186. Abstract: We studied how stimulation of protein kinase C and cAMP-dependent protein kinases affect the development of mesencephalic dopaminergic neurons in primary cell cultures derived from fetal rats at embryonic day E14. The effects of compounds which activate these second messenger systems were compared to those of basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). In mesencephalic cultures, there was a continuous loss of dopaminergic neurons. Despite this decline in cell number, neurotransmitter uptake per neuron increased with time, indicating that the surviving dopaminergic neurons continued their biochemical differentiation while others degenerated. IGF-I and bFGF did not affect the number of dopaminergic neurons. However, dopamine uptake per neuron was significantly higher in bFGF and IGF-I treated cultures, suggesting that these factors stimulated differentiation. Protein kinase C and cAMP-dependent protein kinases were not involved in mediating the effects of bFGF and IGF-I. Treatment of cultures with phorbol esters did not affect dopamine uptake, whereas elevated levels of intracellular cAMP resulted in an increase in dopamine uptake which was additive to that elicited by bFGF or IGF-I. Further analysis revealed that exposure of mesencephalic cultures to dibutyryl cAMP (dbcAMP) during the first 3 days after plating increased the survival of dopaminergic neurons, whereas prolonged treatment attenuated the development of the dopamine uptake system. Moreover, cyclic AMP, but not bFGF, was able to prevent the degeneration of dopaminergic neurons induced by 1-methyl-4-phenyl-pyridinium ion (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results suggest that increased intracellular levels of cAMP protect dopaminergic neurons in situations of stress like the process of dissociation and plating or the exposure to neurotoxic compounds. Our results reveal novel possibilities for the treatment of Parkinson's disease.[Abstract] [Full Text] [Related] [New Search]