These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative toxicity of four chlorinated dibenzo-p-dioxins (CDDs) and their mixture. Part II: Structure-activity relationships with inhibition of hepatic phosphoenolpyruvate carboxykinase, pyruvate carboxylase, and gamma-glutamyl transpeptidase activities. Author: Weber LW, Lebofsky M, Stahl BU, Kettrup A, Rozman K. Journal: Arch Toxicol; 1992; 66(7):478-83. PubMed ID: 1359853. Abstract: Male Sprague-Dawley rats were treated with an LD20, LD50 and LD80 respectively, of tetra-, penta-, hexa-, hepta-CDD and a mixture of the four CDDs, all carrying chlorine substituents in the biologically crucial 2, 3, 7, and 8 positions. Specific activities of two key enzymes of gluconeogenesis, viz, phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC), as well as the activity of the preneoplastic marker enzyme gamma-glutamyl transpeptidase (gamma-GT), were determined in livers of CDD-treated and ad libitum-fed control animals. PEPCK activity showed evidence for dose-related inhibition on the second day after dosing; PC activity was slightly reduced, whereas gamma-GT activity was dose-dependently inhibited. By 8 days after dosing PEPCK activities were dose-dependently decreased after administration of all four CDDs and their mixture. PC activities were significantly reduced, but no dose-response was evident. The activity of gamma-GT was dose-dependently inhibited, but only to a value of 25% below control activities. It is concluded that CDDs share a common mechanism of acute toxicity, viz, inhibition of glucocorticoid-dependent enzymes which results in a derailment of intermediary metabolism not compatible with survival of the animals.[Abstract] [Full Text] [Related] [New Search]