These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus. Author: Kullmann DM, Perkel DJ, Manabe T, Nicoll RA. Journal: Neuron; 1992 Dec; 9(6):1175-83. PubMed ID: 1361129. Abstract: We have studied the role of Ca2+ entry via voltage-sensitive Ca2+ channels in long-term potentiation (LTP) in the CA1 region of the hippocampus. Repeated depolarizing pulses, in the presence of the NMDA receptor antagonist D-APV and without synaptic stimulation, resulted in a potentiation of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs). This depolarization-induced potentiation was augmented in raised extracellular Ca2+ and was blocked by intracellular BAPTA, a Ca2+ chelator, or by nifedipine, a Ca2+ channel antagonist, indicating that the effect was mediated by Ca2+ entry via voltage-sensitive Ca2+ channels. Although the peak potentiation could be as large as 3-fold, the EPSP(C)s decayed back to baseline values within approximately 30 min. However, synaptic activation paired with depolarizing pulses in the presence of D-APV converted the transient potentiation into a sustained form. These results indicate that a rise in postsynaptic Ca2+ via voltage-sensitive Ca2+ channels can transiently potentiate synaptic transmission, but that another factor associated with synaptic transmission may be required for LTP.[Abstract] [Full Text] [Related] [New Search]