These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Population analysis of single neurons in cat somatosensory cortex. Author: Warren RA, Dykes RW. Journal: Somatosens Mot Res; 1992; 9(4):297-312. PubMed ID: 1362827. Abstract: Single neurons in the somatosensory cortex are divisible into a population with receptive fields and a population without receptive fields. These two populations display different laminar distributions, and their respective functions are unknown. We compared other physiological characteristics of these two neuronal populations in an attempt to understand why some neurons lack a receptive field. Only 23% of 465 neurons isolated in the somatosensory cortex of halothane-anesthetized cats displayed a cutaneous receptive field. The iontophoretic administration of glutamate uncovered input from the periphery in another 34% of the sample, leaving 43% of the neurons without evidence of peripheral input under these experimental conditions. Neurons with a receptive field were spontaneously active much more often than neurons lacking peripheral inputs, and their rates of discharge were higher. No differences were found between neurons having a receptive field uncovered with glutamate and those unaffected by glutamate. In all classes of neurons, those cells with spontaneous activity were excited by smaller amounts of glutamate than were silent neurons, but sensitivity to glutamate was not correlated with the presence or absence of a receptive field. We infer that some classes of somatosensory cortical neurons receive strong thalamocortical inputs, whereas others have only relatively weak or no thalamocortical connections. In other experiments we have shown also that those neurons lacking a receptive field and/or spontaneous activity were more likely to be plastic than those with stronger inputs (see Warren and Dykes, 1993a,b), suggesting that neurons having weaker afferent inputs can be more readily modified under certain circumstances.[Abstract] [Full Text] [Related] [New Search]