These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monoterpene double-bond reductases of the (-)-menthol biosynthetic pathway: isolation and characterization of cDNAs encoding (-)-isopiperitenone reductase and (+)-pulegone reductase of peppermint. Author: Ringer KL, McConkey ME, Davis EM, Rushing GW, Croteau R. Journal: Arch Biochem Biophys; 2003 Oct 01; 418(1):80-92. PubMed ID: 13679086. Abstract: Random sequencing of a peppermint essential oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes. Full-length acquisitions of each type were screened by functional expression in Escherichia coli using a newly developed in situ assay. cDNA clones encoding the monoterpene double-bond reductases (-)-isopiperitenone reductase and (+)-pulegone reductase were isolated, representing two central steps in the biosynthesis of (-)-menthol, the principal component of peppermint essential oil, and the first reductase genes of terpenoid metabolism to be described. The (-)-isopiperitenone reductase cDNA has an open reading frame of 942 nucleotides that encodes a 314 residue protein with a calculated molecular weight of 34,409. The recombinant reductase has an optimum pH of 5.5, and K(m) values of 1.0 and 2.2 microM for (-)-isopiperitenone and NADPH, respectively, with k(cat) of 1.3s(-1) for the formation of the product (+)-cis-isopulegone. The (+)-pulegone reductase cDNA has an open reading frame of 1026 nucleotides and encodes a 342 residue protein with a calculated molecular weight of 37,914. This recombinant reductase catalyzes the reduction of the 4(8)-double bond of (+)-pulegone to produce both (-)-menthone and (+)-isomenthone in a 55:45 ratio, has an optimum pH of 5.0, and K(m) values of 2.3 and 6.9 microM for (+)-pulegone and NADPH, respectively, with k(cat) of 1.8s(-1). Deduced sequence comparison revealed that these two highly substrate specific double-bond reductases show less than 12% identity. (-)-Isopiperitenone reductase is a member of the short-chain dehydrogenase/reductase superfamily and (+)-pulegone reductase is a member of the medium-chain dehydrogenase/reductase superfamily, implying very different evolutionary origins in spite of the similarity in substrates utilized and reactions catalyzed.[Abstract] [Full Text] [Related] [New Search]