These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic regulation of sensorimotor integration in human postural control.
    Author: Peterka RJ, Loughlin PJ.
    Journal: J Neurophysiol; 2004 Jan; 91(1):410-23. PubMed ID: 13679407.
    Abstract:
    Upright stance in humans is inherently unstable, requiring corrective action based on spatial-orientation information from sensory systems. One might logically predict that environments providing access to accurate orientation information from multiple sensory systems would facilitate postural stability. However, we show that, after a period in which access to accurate sensory information was reduced, the restoration of accurate information disrupted postural stability. In eyes-closed trials, proprioceptive information was altered by rotating the support surface in proportion to body sway (support surface "sway-referencing"). When the support surface returned to a level orientation, most subjects developed a transient 1-Hz body sway oscillation that differed significantly from the low-amplitude body sway typically observed during quiet stance. Additional experiments showed further enhancement of the 1-Hz oscillation when the surface transitioned from a sway-referenced to a reverse sway-referenced motion. Oscillatory behavior declined with repetition of trials, suggesting a learning effect. A simple negative feedback-control model of the postural control system predicted the occurrence of this 1-Hz oscillation in conditions where too much corrective torque is generated in proportion to body sway. Model simulations were used to distinguish between two alternative explanations for the excessive corrective torque generation. Simulation results favor an explanation based on the dynamic reweighting of sensory contributions to postural control rather than a load-compensation mechanism that scales torque in proportion to a fixed combination of sensory-orientation information.
    [Abstract] [Full Text] [Related] [New Search]