These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The imidazoline NNC77-0020 affects glucose-dependent insulin, glucagon and somatostatin secretion in mouse pancreatic islets. Author: Høy M, Olsen HL, Bokvist K, Petersen JS, Gromada J. Journal: Naunyn Schmiedebergs Arch Pharmacol; 2003 Oct; 368(4):284-93. PubMed ID: 13680090. Abstract: The effect of the novel imidazoline compound 2-[2-(4,5-dihydro-1H-imidazol-2-yl)-1-(5-methyl-2,3-dihydrobenzofuran-7-yl)-ethyl]-pyridine (NNC77-0020) on stimulus-secretion coupling and hormone secretion was investigated in mouse pancreatic islets and isolated alpha- and beta-cells. In the presence of elevated glucose concentrations NNC77-0020 stimulated insulin secretion concentration dependently (EC(50) 64 nM) by 200% without affecting the whole-cell K(+) current or cytoplasmic Ca(2+) levels. Capacitance measurements in single mouse beta-cells showed that intracellular application of NNC77-0020 via the recording pipette enhanced Ca(2+)-dependent exocytosis. This action was dependent on protein kinase C (PKC) and cytoplasmic phospholipase A(2) (cPLA(2)) activity and required functional granular ClC-3 Cl(-) channels. In intact islets NNC77-0020 stimulated glucose-dependent somatostatin secretion, an effect that was also dependent on PKC and cPLA(2) activity. NNC77-0020 also inhibited glucagon secretion. In single mouse alpha-cells this action was not associated with a change in spontaneous electrical activity and resulted from a reduction in the rate of Ca(2+)-dependent exocytosis. Inhibition of exocytosis by NNC77-0020 was pertussis toxin sensitive and mediated by activation of the protein phosphatase calcineurin. In conclusion, our data suggest that the imidazoline compound NNC77-0020 modulates pancreatic hormone secretion in a complex fashion, comprising glucose-dependent stimulation of insulin and somatostatin secretion and inhibition of glucagon release. These mechanisms of action constitute an ideal basis for the development of novel imidazoline-containing anti-diabetic compounds.[Abstract] [Full Text] [Related] [New Search]