These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of RecB-mediated (but not RecF-mediated) repair of DNA double-strand breaks in the gamma-radiation production of long deletions in Escherichia coli.
    Author: Sargentini NJ, Smith KC.
    Journal: Mutat Res; 1992 Jan; 265(1):83-101. PubMed ID: 1370245.
    Abstract:
    Experiments were designed to determine the association between the repair of gamma-radiation-induced DNA double-strand breaks (DSB) and the induction of 700-1000 bp long deletions (Lac(-)----Lac+), base substitutions (leuB19----Leu+), and frameshifts (trpE9777----Trp+) in Escherichia coli K-12. Over the range of 2.5-20 krad, deletions were induced with linear kinetics, as has been shown for the induction of DSB, while the induction kinetics of base substitutions and frameshifts were curvilinear. Like the repair of DSB, deletion induction showed an absolute requirement for an intact recB gene as well as a dependency on the type of preirradiation growth medium; these requirements were not seen for base substitutions or frameshifts. In addition, about 80% of the spontaneous deletions were absent in the recB21 strain. A recC1001 mutation, which confers a 'hyper-Rec' phenotype, increased the rate of gamma-radiation-induced deletions as well as the low-dose production of base substitutions and frameshifts. A recF143 mutation increased the yield of gamma-radiation-induced deletions without increasing base substitutions or frameshifts. A mutS mutation markedly enhanced the gamma-radiation induction of frameshifts, and had a slight effect on base substitutions, but did not affect the induction of deletions. Resistance to gamma-irradiation and the capacity to repair DSB (albeit at about half the normal rate) were restored to the radiosensitive recB21 strain by the addition of the sbcB21 and sbcC201 mutations. However, the radioresistant recB sbcBC strain, which is recombination proficient via the RecF pathway, was still grossly deficient in the ability to produce deletions. A model for deletion induction as a by-product of the recB-dependent (Chi-dependent) repair of gamma-radiation-induced DSB is discussed, as is the inability to detect deletions in cells that use only the recF-dependent (Chi-independent) mechanism to repair DSB.
    [Abstract] [Full Text] [Related] [New Search]