These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The inhibition of long-chain fatty acyl-CoA synthetase by enoximone in rat heart mitochondria.
    Author: Abdel-aleem S, Youssef J, Badr M, Morgan P, Frangakis C.
    Journal: J Cardiovasc Pharmacol; 1992 Jun; 19(6):899-904. PubMed ID: 1376810.
    Abstract:
    The mechanism by which enoximone, a reported phosphodiesterase inhibitor, inhibits the oxidation of long-chain fatty acids was studied in isolated rat heart mitochondria using a series of 14C-labeled substrates. Enoximone decreased palmitate oxidation in a time- and concentration-dependent manner. Fifty percent inhibition of palmitate oxidation was achieved with 250 microM of enoximone. In contrast to its effect on palmitate, enoximone (250 microM) increased octanoate oxidation by 30%, whereas pyruvate oxidation was unaffected by enoximone. At that dose there was no effect on the oxidation of palmitoyl-CoA and palmitoyl carnitine. The degree of palmitate oxidation inhibited by enoximone was parallel to the inhibition of acyl-CoA synthetase in both rat heart mitochondria and microsomes. These results suggest that enoximone is a reversible inhibitor of long-chain fatty acyl-CoA synthetase. Moreover, the reaction, which is catalyzed by this enzyme, is a rate-limiting step in the pathway of fatty acid oxidation in rat heart mitochondria.
    [Abstract] [Full Text] [Related] [New Search]