These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of oxygen exchange in actin-activated hydrolysis of adenosine triphosphate by myosin subfragment 1.
    Author: Shukla KK, Levy HM.
    Journal: Biochemistry; 1977 Jan 11; 16(1):132-6. PubMed ID: 137740.
    Abstract:
    The gamma-phosphoryl groups of two intermediates (M-ATP and M-ADP-P1) in the pathway of MgATP hydrolysis by myosin undergo extensive oxygen exchange with water. Actin activates the overall rate of hydrolysis at a rate-limiting step which follows these exchange reactions. Thus, actin, by decreasing the turnover time of hydrolysis, would be expected to proportionately decrease the time available for oxygen exchange. Using subfragment 1 of myosin, the turnover time of hydrolysis can be varied over a wide range by changing the concentration of actin. An estimate for the rate constant of exchange can then be obtained by relating these turnover times to measured values for oxygen exchange (incorporation of 18O from H218O into the inorganic phosphate (Pi) released by hydrolysis). The results of such an experiment, with turnover times between 0.2 and 25 s, indicate that, for each gamma-phosphoryl group, one oxygen from the medium is added rapidly (to cleave the phosphoryl group or form a pentacoordinate phosphroyl complex); two more oxygens exchange with a rate constant, kc, of about 1 s-1; and a fourth oxygen exchanges slowly with ke about 0.2 s-1. The higher value is about 18 times smaller than the rate constant, 5-3, for the reverse cleavage step of the myosin pathway, which is postulated to be responsible for oxygen exchange. The data, then, indicate that the rate-limiting step for oxygen exchange is not k-3, but may be the rate of rotation of oxygens around the phosphorus atom, with one oxygen severely restricted by its binding to the active site. The finding that kc differs for the four oxygens in each phosphate group is related to past observations on myosin-catalyzed oxygen exchange.
    [Abstract] [Full Text] [Related] [New Search]