These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transsynaptic regulation of galanin, neurotensin, and substance P in the adrenal medulla: combinatorial control by second-messenger signaling pathways. Author: Fischer-Colbrie R, Eskay RL, Eiden LE, Maas D. Journal: J Neurochem; 1992 Aug; 59(2):780-3. PubMed ID: 1378491. Abstract: The adrenomedullary content of neurotensin and substance P was examined 1, 6, and 12 days after hypoglycemic shock. The neurotensin content was increased 60-fold within 24 h and remained elevated for up to 12 days, whereas the substance P content was increased approximately sevenfold within 24 h of insulin treatment and returned to control levels by 12 days poststimulation. Because protein kinase A, protein kinase C, and calcium influx in the rat adrenal medulla are all stimulated following splanchnic nerve stimulation, the differential regulation of neurotensin and substance P biosynthesis following stimulation of these three pathways was examined in bovine chromaffin cells in vitro. Neurotensin levels were up-regulated by elevated potassium, forskolin, and phorbol ester in bovine chromaffin cells. Substance P levels were up-regulated by elevated potassium and forskolin but not by phorbol ester treatment. When chromaffin cells were treated with phorbol ester in combination with forskolin, neurotensin levels were increased in a synergistic fashion, whereas phorbol ester antagonized the forskolin-induced elevation of substance P levels. Earlier, it was reported that galanin biosynthesis, like neurotensin biosynthesis, is upregulated by depolarization, phorbol ester stimulation, and forskolin treatment in chromaffin cells in vitro. Here we report that galanin is also, like neurotensin, increased greater than 60-fold after stimulation of the rat adrenal medulla in vivo. Neuropeptide-specific combinatorial effects of stimulating the calcium, protein kinase A, and protein kinase C signaling pathways may underlie the quantitative differences between galanin and neurotensin compared with substance P up-regulation in rat adrenal medulla after splanchnic nerve stimulation in vivo.[Abstract] [Full Text] [Related] [New Search]