These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epitope-specific suppression of antibody response in experimental autoimmune myasthenia gravis by a monomethoxypolyethylene glycol conjugate of a myasthenogenic synthetic peptide. Author: Atassi MZ, Ruan KH, Jinnai K, Oshima M, Ashizawa T. Journal: Proc Natl Acad Sci U S A; 1992 Jul 01; 89(13):5852-6. PubMed ID: 1378618. Abstract: A synthetic peptide corresponding to a myasthenogenic region of Torpedo californica acetylcholine (AcCho) receptor (AcChoR) alpha subunit, AcChoR alpha-(125-148), was conjugated to monomethoxypolyethylene glycol (mPEG). Injection of mice with the mPEG-AcChoR alpha-(125-148) conjugate and subsequent immunization with whole Torpedo AcChoR suppressed the development of experimental autoimmune myasthenia gravis (EAMG) by electrophysiological criteria. In anti-AcChoR sera from these animals, the antibody response against unconjugated AcChoR alpha-(125-148) was decreased, while the antibody responses against whole AcChoR and other epitopes were not altered. There were no detectable changes in T-cell proliferation responses to AcChoR alpha-(125-148) or to whole AcChoR in these animals. Prior injections with a "nonsense" peptide-mPEG conjugate had no effect on responses to the subsequent immunization with whole Torpedo AcChoR. The results indicate that the mPEG-AcChoR alpha-(125-148) conjugate has epitope-specific tolerogenicity for antibody responses in EAMG and that the AcChoR alpha-subunit region comprising residues 125-148 plays an important pathophysiological role in EAMG. The epitope-directed tolerogenic conjugates may be useful for future immunotherapies of human myasthenia gravis. The strategy of specific suppression of the antibody response to a predetermined epitope by using a synthetic mPEG-peptide conjugate may prove useful in manipulation and suppression of unwanted immune responses such as autoimmunity and allergy.[Abstract] [Full Text] [Related] [New Search]