These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A lineage-specific Ca(2+)-activated K+ conductance in HL-60 cells.
    Author: Wieland SJ, Gong QH, Chou RH, Brent LH.
    Journal: J Biol Chem; 1992 Aug 05; 267(22):15426-31. PubMed ID: 1379229.
    Abstract:
    Cells of the human promyelocytic cell line HL-60 can be controllably induced to terminally differentiate into either granulocytes or monocyte/macrophages. HL-60 promyelocytes and terminally differentiated macrophages express a K(+)-selective ion channel which is activated by intracellular free Ca2+ concentrations above 10(-7) M. Because of its voltage independence, this channel can be distinguished from the voltage- and Ca(2+)-activated family of outward-rectifying channels. The channel is selective for K+ against Na+ and is blocked by Ba2+, thus it may be similar to the Ca(2+)-activated K+ channel previously described in human macrophages. In its sensitivity to block by charybdotoxin, this channel also resembles a Ca(2+)-activated K+ channel of lymphocytes, which plays a role in activation-dependent hyperpolarization. In contrast to promyelocytes and macrophages, functional expression of the Ca(2+)-activated K+ channel is suppressed to nearly undetectable levels in granulocytes derived from HL-60 cells by retinoic acid-induced differentiation. These data suggest that signals which produce elevation of intracellular Ca2+ will hyperpolarize promyelocytes and differentiated macrophages by activating this conductance; however, signals which elevate free Ca2+ in granulocytes must act on other effectors, which may produce a different final influence on membrane potential.
    [Abstract] [Full Text] [Related] [New Search]