These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21.
    Author: Shou C, Farnsworth CL, Neel BG, Feig LA.
    Journal: Nature; 1992 Jul 23; 358(6384):351-4. PubMed ID: 1379346.
    Abstract:
    The stimulation of a variety of cell surface receptors promotes the accumulation of the active, GTP-bound form of Ras proteins in cells. This is a critical step in signal transduction because inhibition of Ras activation by anti-Ras antibodies or dominant inhibitory Ras mutants blocks many of the effects of these receptors on cellular function. To reach the active GTP-bound state, Ras proteins must first release bound GDP. This rate-limiting step in GTP binding is thought to be catalysed by a guanine-nucleotide-releasing factor (GRF). Here we report the cloning of complementary DNAs from a rat brain library that encode a approximately 140K GRF for Ras p21 (p140Ras-GRF). Its carboxy-terminal region is similar to that of CDC25, a GRF for Saccharomyces cerevisiae RAS. This portion of Ras-GRF accelerated the release of GDP from RasH and RasN p21 in vitro, but not from the related RalA, or CDC42Hs GTP-binding proteins. A region in the amino-terminal end of Ras-GRF is similar to both the human breakpoint cluster protein, Bcr, and the dbl oncogene product, a guanine-nucleotide-releasing factor for CDC42Hs. An understanding of Ras-GRF function will enhance our knowledge of the many signal transduction pathways mediated by Ras proteins.
    [Abstract] [Full Text] [Related] [New Search]