These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low K+ increases Na(+)-K(+)-ATPase alpha- and beta-subunit mRNA and protein abundance in cultured renal proximal tubule cells. Author: Tang MJ, McDonough AA. Journal: Am J Physiol; 1992 Aug; 263(2 Pt 1):C436-42. PubMed ID: 1381148. Abstract: Studies from this laboratory demonstrate that LLC-PK1/Cl4 cells, a cultured renal cell line, respond to incubation in low-K+ medium by coordinately increasing abundance of both alpha- and beta-subunits of Na(+)-K(+)-ATPase but increase only beta- and not alpha-mRNA levels (Lescale-Matys et al. J. Biol. Chem. 265: 17935-17940, 1990) and that alpha-abundance is likely increased as a result of increased efficiency of alpha-mRNA translation (L. Lescale-Matys and A. A. McDonough. J. Cell Biol. 111: 311A, 1990). The aim of this report was to determine if nontransformed kidney cells would respond to low K+ in a similar manner. We incubated primary cultures of rat proximal tubule cells in low K+ (0.25 mM) for up to 24 h to address this aim. Na(+)-K(+)-ATPase activity, measured enzymatically, and abundance of alpha- and beta-subunits, measured by immunoblot, were increased significantly and coordinately by 8 h of low K+, and, by 24 h of low K+, these parameters were increased to 2.17 +/- 0.34 (activity), 2.03 +/- 0.21 (alpha), and 2.39 +/- 0.48 (beta)-fold over control. Pretranslationally, beta-mRNA, measured by Northern blot analysis, increased to 1.76 +/- 0.35 after 3 h of low K+ and to 3.4 +/- 0.75-fold over control after 24 h of low K+. The increase in alpha-mRNA was smaller and delayed compared with the beta-mRNA response, but it was sufficient to account for the observed increase in alpha-protein and Na(+)-K(+)-ATPase activity at steady state: alpha-mRNA increased to 1.27 +/- 0.09 after 6 h and to 1.91 +/- 0.41-fold over control after 24 h in low K+. We conclude that the accumulation of sodium pumps in cultured renal proximal tubule cells, unlike LLC-PK1 cells, can be accounted for by increases in both alpha- and beta-subunit mRNA levels.[Abstract] [Full Text] [Related] [New Search]