These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Occupancy of the cancer cell urokinase receptor (uPAR): effects of acid elution and exogenous uPA on cell surface urokinase (uPA). Author: Baker MS, Liang XM, Doe WF. Journal: Biochim Biophys Acta; 1992 Sep 15; 1117(2):143-52. PubMed ID: 1381963. Abstract: The development of a simple, sensitive fluorimetric assay for the measurement of cell surface-associated urokinase plasminogen activator (uPA) on viable, adherent HCT116 cells in microtitre plates, after a preincubation with purified human plasminogen is described. The assay determines plasmin activity by the cleavage of H-D-Val-Leu-Lys 4-aminomethyl coumarin under near physiological pH and ionic conditions with a sensitivity in the range of 5-100 mIU uPA/well at excitation 355 nm and emission 460 nm. Plasmin generated during the assay converted all cell-surface sc-uPA to tc-uPA, allowing the determination of total uPA activity. Inhibitor studies (PAI-2, amiloride or Glu-Gly-Arg chloromethylketone) confirmed the specificity of the uPA assay. Removal of these agents prior to assay allowed determination of the cell surface sc-uPA:tc-uPA ratio. Cell surface activity was only partially removed by acid elution. This corresponded with the loss of a number of proteins and uPA-containing species as detected by SDS-PAGE, gelatin enzymography and Western blotting. Although the major protein species eluted had a M(r) of 55 kDa, reacted with a commercial anti-human uPA mAb and correlated with the main lytic zone, other higher M(r) species were also eluted from HCT116 cells. Exogenous uPA increased cell-surface activity markedly on cells previously treated with acid. Following acid elution, cell surface uPA activity was restored after 30h in culture suggesting either de novo synthesis or release of pre-formed uPA with subsequent secretion and binding to uPAR. The assay has enabled studies on adherent cells to address questions about the regulation and expression of cell-surface uPA.[Abstract] [Full Text] [Related] [New Search]