These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of perfusate [Ca2+] on cardiac sarcoplasmic reticulum Ca2+ release channel in isolated rat hearts. Author: Abdelmeguid AE, Feher JJ. Journal: Circ Res; 1992 Nov; 71(5):1049-58. PubMed ID: 1382883. Abstract: The effect of perfusate [Ca2+] on the function of cardiac sarcoplasmic reticulum (CSR) was assessed by the oxalate-supported Ca2+ uptake rate of ventricular homogenates of isolated rat hearts maintained in a modified Langendorff preparation. The total Ca2+ pumping activity of the CSR was determined by using 20 microM ruthenium red or 625 microM ryanodine to close the CSR Ca2+ release channel. The homogenate Ca2+ uptake rate in the absence of ruthenium red or ryanodine decreased progressively with increasing perfusate [Ca2+] (25.7 +/- 1.2, 21.4 +/- 1.5, 17.2 +/- 1.1, and 16.3 +/- 1.2 [mean +/- SEM] nmol Ca2+.min-1.mg-1 for hearts perfused for 5 minutes with 0.2, 1.4, 2.8, and 5.6 mM Ca2+, respectively; p = 0.0001; n = 8). This depression was not observed when Ca2+ uptake was assayed in the presence of ryanodine or ruthenium red. Since the Ca2+ uptake in the presence of ryanodine or ruthenium red is determined by the Ca(2+)-ATPase, this result suggests that perfusion with varying [Ca2+] did not affect the Ca(2+)-ATPase. The observed decrease in Ca2+ uptake in the absence of ryanodine or ruthenium red is caused by an increased efflux through the ryanodine-sensitive Ca2+ release channel. When hearts perfused for 5 minutes with 0.2 or 5.6 mM Ca2+ were reperfused for 10 minutes with 1.4 mM Ca2+, homogenate Ca2+ uptake rates were restored to near control levels. These effects of perfusate Ca2+ were not direct effects, because changes in the [Ca2+] of the homogenization medium did not alter the homogenate Ca2+ uptake activity in either the presence or absence of ryanodine. The homogenate Ca2+ uptake rates were unaffected by prior active loading of the CSR with Ca2+. These results suggest a regulatory role of perfusate Ca2+ in increasing the open state of the ryanodine-sensitive Ca2+ release channel that is distinct from the beat-to-beat regulation of Ca2+ release from the CSR by Ca2+ (Ca(2+)-induced Ca2+ release).[Abstract] [Full Text] [Related] [New Search]