These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line.
    Author: Adamo ML, Shao ZM, Lanau F, Chen JC, Clemmons DR, Roberts CT, LeRoith D, Fontana JA.
    Journal: Endocrinology; 1992 Oct; 131(4):1858-66. PubMed ID: 1382963.
    Abstract:
    Retinoic acid (RA) blocks insulin-like growth factor-I (IGF-I) stimulation of proliferation in the MCF-7 breast carcinoma cell line, and this is associated with the appearance of 42- to 46-kilodalton (kDa) IGF-binding proteins(s) (IGFBPs) in the conditioned medium (CM), in addition to the approximately 34- and 27-kDa IGFBPs present in the CM of unstimulated cells. Using immunological, biochemical, and molecular biological criteria, we have identified the 27-kDa band as IGFBP-4, the 34-kDa band as IGFBP-2, and the 42- to 46-kDa band as IGFBP-3. IGF-I alone stimulated MCF-7 cell proliferation, and this was associated with a large increase in IGFBP-2 in the CM. RA alone resulted in increased IGFBP-4 levels and the appearance of IGFBP-3 in the CM. The combination of RA and IGF-I, which resulted in decreased cellular proliferation, was associated with the appearance of IGFBP-3 in the CM at levels far exceeding those seen with RA alone. The effect of IGF-I on IGFBP-2 levels and the synergistic action of IGF-I and RA on IGFBP-3 levels in CM were blocked by alpha IR3, a monoclonal antibody to the human IGF-I receptor, indicating that these effects required signal transduction through the IGF-I receptor. IGFBP-2, -3, and -4 mRNAs were detected in unstimulated MCF-7 cells. RA increased IGFBP-3 mRNA levels, suggesting that transcriptional events contribute to the RA stimulation of IGFBP-3 appearance in CM. In contrast, the increase in IGFBP-2 protein in CM after IGF-I treatment appeared to be greater than the increase in IGFBP-2 mRNA levels. The increase in IGFBP-3 protein in CM in response to the combination of RA and IGF-I was much greater than the increase in IGFBP-3 mRNA. These results suggest that the action of RA and IGF-I in combination to increase IGFBP-3 protein in CM is principally translational or posttranslational. We speculate that RA inhibition of IGF-I-stimulated MCF-7 cell proliferation may be due to IGFBP-3, or that increased levels of IGFBP-3 in response to growth inhibition represent a compensatory response.
    [Abstract] [Full Text] [Related] [New Search]