These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ channel inhibition in a rat osteoblast-like cell line, UMR 106, by a new dihydropyridine derivative, S11568.
    Author: Morain P, Peglion JL, Giesen-Crouse E.
    Journal: Eur J Pharmacol; 1992 Sep 10; 220(1):11-7. PubMed ID: 1385178.
    Abstract:
    UMR 106 rat osteogenic sarcoma cells were studied with the whole cell patch clamp technique to investigate the presence of voltage-gated inward currents. In barium (Ba2+)-containing medium, depolarizing jumps revealed both transient (T-type) and sustained (L-type) Ba2+ currents. The L-type component was dihydropyridine-sensitive: the agonist Bay K 8644 increased the amplitude of the L-type Ba2+ current. A new dihydropyridine calcium channel blocker, S 11568 ((+/-)-2(2-[2-(aminoethoxy)ethoxyl]methyl)4-(2',3'- dichlorophenyl)3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4- dihydropyridine, and its enantiomers, S 12967 ((+)-S 11568) and S 12968 ((-)-S 11568), inhibited the L-type Ba2+ current. IC50 values at a holding potential (VH) of -50 mV were 90 nM for S 11568, 800 nM for S 12967 and 45 nM for S 12968. At VH = -80 mV, S 12968 was less potent (IC50 near 500 nM). In contrast, S 12968 was without appreciable effect on the T-type component of the inward current through Ca2+ channels. Our results indicate that UMR 106 cells express both T-type and L-type Ca2+ channels and could be used to study the modulation by Ca2+ channel blocking agents, such as S 12968, of the hormonal regulation of Ca2+ fluxes across the osteoblast membrane.
    [Abstract] [Full Text] [Related] [New Search]