These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: B cell deficiency progresses with lineage maturation in nude.X-linked immunodeficient mice B cell deficiency progresses with lineage maturation.
    Author: Chung HY, Dong Z, Wortis HH.
    Journal: J Immunol; 1992 Dec 01; 149(11):3456-62. PubMed ID: 1385525.
    Abstract:
    Previously we showed that unlike normal, nude, or X-linked immune deficient (xid) mice, nude.xid mice are deficient in bone marrow pre-B cell targets for Abelson murine leukemia virus transformation. We show that nude.xid bone marrow is deficient in both CD45(B220)+ and CD45(B220)- surface (s)IgM- progenitors that give rise to B cell colonies in Whitlock-Witte cultures. CD45(B220)+ precursors had normal differentiation potential in vitro. CD45(B220)- precursors differentiated into CD45(B220)+ cells at the same rate as normal controls, but acquired sIgM at a much slower rate. These results correlated with the observation that in nude.xid mice the severity of B lineage defects correlates with maturity: a profound (ninefold) deficit of sIgM+, CD45(B220)+ mature B cells, a fivefold deficit in the sIgM-, CD45(B220)+ precursors of short term B cell colonies (colonies forming within 4-5 days in Whitlock-Witte cultures), and a moderate (twofold) decrease in the frequency of sIgM-, CD45(B220)- (less mature) precursors of long term B cell colonies (colonies forming after 14 days of Whitlock-Witte culture. Thus the combination of the nude and xid mutations produces a deficiency in early B cell progenitors and the deficiency becomes more profound with further maturation. Therefore the lack of mature B cells is the result of a cascade effect. Inasmuch as bone marrow progenitors are affected, and these are the source of the vast majority of B cells, most B cells are affected by the xid mutation and the xid defect cannot be attributed to a loss of a fetal lineage of B cells. These results suggest that xid affected cells lack the capacity to progress efficiently through differentiation in the absence of an exogenous factor(s) that is dependent on the product of a normal allele at the nude locus. This product might be supplied in vivo by a T cell or T cell-dependent source and/or epithelial elements such as bone marrow stromal cells all of which are known to be affected by the nude mutation.
    [Abstract] [Full Text] [Related] [New Search]