These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association between increased atrial natriuretic peptide and reduced cisplatin nephrotoxicity in rats.
    Author: Ormond PM, Basinger MA, Jones MM, Hande KR.
    Journal: J Pharmacol Exp Ther; 1992 Jul; 262(1):246-51. PubMed ID: 1385629.
    Abstract:
    Plasma atrial natriuretic peptide (ANP) concentrations were monitored in two experimental models of protection from cisplatin nephrotoxicity. Sprague-Dawley rats made diabetic with streptozotocin (65 mg/kg) were protected from cisplatin-induced nephrotoxicity when compared to control rats as indicated by reduced plasma creatinine (0.49 +/- 0.02 vs. 0.9 +/- 0.06 mg/dl; P less than .001) and blood urea nitrogen concentrations (18.51 +/- 1.4 vs. 43.08 +/- 2.1 mg/dl; P less than .001). Plasma ANP was also increased with experimental diabetes (76.5 +/- 8.98 fmol/ml) vs. normoglycemic controls (43.8 +/- 8.9 fmol/ml; P less than .02). When diabetic rats were treated with insulin, the renal protection observed with the diabetic state was reversed (creatinine, 0.70 +/- .05 mg/dl); plasma ANP concentrations were also reduced (52.2 +/- 15.2 fmol/ml). Renal platinum concentrations were significantly lower in the diabetic group and the reversal of diabetic-induced renal protection with insulin was associated with increased renal platinum concentrations. In rats given a single i.p. dose of cisplatin (5 mg/kg), a reduction in cisplatin-induced nephrotoxicity was observed when 5% NaCl was the vehicle of choice compared to that seen in rats given the same dose of drug in 0.9% saline (creatinine, 0.43 +/- 0.07 with 5% NaCl vs. 0.63 +/- 0.03 with 0.09% NaCl). NaCl (5%) administration also resulted in increased plasma ANP concentrations when compared to rats receiving equivalent volumes of 0.9% NaCl (88.4 +/- 6.2 vs. 50.5 +/- 5.6 fmol/ml, respectively). These data suggest that increased endogenous ANP may be a mechanism of renal protection common to both experimental diabetes and hypertonic saline administration. Chronically increased ANP may prevent renal accumulation of platinum in the kidney.
    [Abstract] [Full Text] [Related] [New Search]