These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae. Author: Lloyd D, James CJ, Maitra PK. Journal: Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501. Abstract: Ethanol and CO2 production from glucose by non-proliferating suspensions of aerobically-grown, glucose-derepressed wild-type Saccharomyces cerevisiae is inhibited by O2; monitoring by mass spectrometry provides a direct method for measurement of the Pasteur effect. Under aerobic conditions, that part of the CO2 evolved equivalent to the O2 consumed, is produced by respiration: subtraction of this respiratory CO2 from the total gives CO2 produced by aerobic glycolysis. Pasteur quotients (anaerobic CO2/aerobic glycolytic CO2) were within the range 1.2 to 3.0. The Pasteur effect was not observed in the presence of carbonyl cyanide m-chlorophenylhydrazone, an uncoupler of mitochondrial energy metabolism, or in a rho degree cytoplasmic petite mutant. A 'non-allosteric' mutant with an altered regulatory subunit of phosphofructokinase showed no Pasteur effect. Strains bearing a nonsense mutation pfk1 in the catalytic subunit of soluble phosphofructokinase (PFKI) also showed no Pasteur effect; the residual fermentative activity of this strain was dependent on PFKII, the particulate phosphofructokinase. A double mutant lacking both PFKI and glucose-6-phosphate dehydrogenase showed similar characteristics to those of the single pfk1 mutant; this indicates that the hexose monophosphate shunt is not acting to bypass the phosphofructokinase block. A 'hyper-allosteric' mutant altered in the regulatory subunit encoded by the gene PFK2 showed characteristics of glucose fermentation and ethanol oxidation very similar to those of wild-type organisms. These results indicate that either of the two phosphofructokinases can carry out glycolysis.[Abstract] [Full Text] [Related] [New Search]