These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reductive half-reaction in medium-chain acyl-CoA dehydrogenase: modulation of internal equilibrium by carboxymethylation of a specific methionine residue.
    Author: Cummings JG, Lau SM, Powell PJ, Thorpe C.
    Journal: Biochemistry; 1992 Sep 15; 31(36):8523-9. PubMed ID: 1390638.
    Abstract:
    Pig kidney medium-chain acyl-CoA dehydrogenase is specifically alkylated at a methionine residue by treatment with iodoacetate at pH 6.6. This residue corresponds to Met249 in the human medium-chain acyl-CoA dehydrogenase sequence [Kelly, D. P., Kim, J. J., Billadello, J. J., Hainline, B. E., Chu, T. W., & Strauss, A. W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4068-4072]. The S-carboxymethylated dehydrogenase shows a drastically lowered affinity for octanoyl-CoA (from submicromolar to 65 microM), but retains about 23% of the maximal activity of the native enzyme. In addition, alkylation perturbs the internal redox equilibrium: E.FADox.octanoyl-CoA K2 in equilibrium with E.FAD2e.octenoyl-CoA K2 ranges from about 9 for the native enzyme to about 0.2 for the homogeneously modified protein. This effect is not due to a significant change in the redox potential of the free enzyme upon alkylation. Rather, carboxymethylation weakens the preferential binding of enoyl-CoA product to the reduced enzyme (K3) compared to octanoyl-CoA binding to the oxidized dehydrogenase (K1) that is required to pull the substrate thermodynamically uphill. Thus, the ratio of dissociation constants, K1/K3, decreases from about 15,000 for the native enzyme to only 330 upon carboxymethylation of Met249. Binding studies with a variety of acyl-CoA analogues and manipulation of enzyme redox potentials by substitution of the natural prosthetic group by 8-Cl-FAD confirm the thermodynamic effects of alkylation.
    [Abstract] [Full Text] [Related] [New Search]