These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Why water-soluble, compact, globular proteins have similar specific enthalpies of unfolding at 110 degrees C.
    Author: Doig AJ, Williams DH.
    Journal: Biochemistry; 1992 Oct 06; 31(39):9371-5. PubMed ID: 1390722.
    Abstract:
    The changes in free energy, enthalpy, and entropy of unfolding have been measured for many water-soluble, compact, globular proteins by a number of workers. In principle, a wide range in stability could be achieved by proteins, as measured by the free energy of unfolding; in practice, evolution only allows a narrow range in this quantity. Proteins are only marginally stable at room temperature for many possible reasons, including ensuring that folding is reversible and polypeptide chains are not trapped in incorrectly folded structures. Many of these proteins have approximately the same values of enthalpy of unfolding around 110 degrees C. We show here that this arises because the change in entropy of unfolding at room temperature and the change in heat capacity on unfolding, which governs the temperature variation of the enthalpy and entropy, both vary with the magnitude of the hydrophobic effect in the protein. As all these proteins have evolved to achieve similar stabilities at room temperature, the enthalpy of unfolding will also vary with the size of the hydrophobic effect in the protein. A consequence of this is that curves of the specific unfolding enthalpy against temperature for different proteins intersect around 110 degrees C. A similar conclusion, on the basis of similar melting points rather than similar free energies of unfolding, has been reached independently by Baldwin and Muller (R. L. Baldwin, personal communication).
    [Abstract] [Full Text] [Related] [New Search]