These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro chemical and cellular tests applied to uranium trioxide with different hydration states. Author: Ansoborlo E, Chalabreysse J, Hengé-Napoli MH, Pujol E. Journal: Environ Health Perspect; 1992 Jul; 97():139-43. PubMed ID: 1396449. Abstract: A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO3) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO3, showing a lower solubility of hydrated UO3 in solvents compared to basic UO3 or UO3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions: a good reproducibility of the three tests in Eagle's basal medium the effect of hydration state on solubility, the classification of UO3 in terms of ICRP solubility criteria, and the ability of macrophages to decrease uranium solubility in medium.[Abstract] [Full Text] [Related] [New Search]