These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and partial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus.
    Author: Meulenberg R, Pronk JT, Frank J, Hazeu W, Bos P, Kuenen JG.
    Journal: Eur J Biochem; 1992 Oct 01; 209(1):367-74. PubMed ID: 1396709.
    Abstract:
    Cell-free extracts of Thiobacillus acidophilus catalysed the quantitative conversion of trithionate (S3O6(2-) to thiosulphate and sulphate. A continuous assay for quantification of experimental results was based on the difference in absorbance between trithionate and thiosulphate at 220 nm. Trithionate hydrolase was purified to near homogeneity from cell-free extracts of T. acidophilus. The molecular masses of the native enzyme and the subunit were 99 kDa (gel filtration) and 34 kDa (SDS/PAGE). The purified enzyme has a pH optimum of 3.5-4.5 and a temperature optimum of 70 degrees C. Enzyme activity was stimulated by sulphate. The stimulation of the enzyme activity by sulphate was half maximal at a concentration of 0.23 M. The Km for trithionate is 70 microM at 30 degrees C and 270 microM at 70 degrees C. Enzyme activity was lost after 36 days at 0 degrees C, 27 days at 70 degrees C; but after 97 days at 30 degrees C, 40% of the initial activity was still present: The enzyme activity was inhibited by mercury chloride, N-ethylmaleimide, thiosulphate and tetrathionate. Tetrathionate S4O6(2-) was not hydrolysed by trithionate hydrolase.
    [Abstract] [Full Text] [Related] [New Search]