These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reductions of neural activities to upper airway muscles after elevations in static lung volume. Author: St John WM, Zhou D. Journal: J Appl Physiol (1985); 1992 Aug; 73(2):701-7. PubMed ID: 1400000. Abstract: We evaluated the hypothesis that the tonic discharge of pulmonary stretch receptors significantly influences the respiratory-modulated activities of cranial nerves. Decerebrate and paralyzed cats were ventilated with a servo-respirator, which produced changes in lung volume in parallel with integrated phrenic activity. Activities of the facial, hypoglossal, and recurrent laryngeal nerves and nerves to the thyroarytenoid muscle and triangularis sterni were recorded. After a stereotyped pattern of lung inflation, tracheal pressure was held at 1, 2, 4, or 6 cmH2O during the subsequent ventilatory cycle. Increases in tracheal pressure caused progressive reductions in both inspiratory and expiratory cranial nerve activities and progressive elevations in triangularis sterni discharge; peak levels of phrenic activity declined modestly. Similar changes were observed in normocapnia and hypercapnia. We conclude that the tonic discharge of pulmonary stretch receptors is an important determinant of the presence and magnitude of respiratory-modulated cranial nerve activity. This reflex mechanism may maintain upper airway patency and also regulate expiratory airflow.[Abstract] [Full Text] [Related] [New Search]