These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of changes in segmental values and timing of both torque and torque reversal in simulated throws. Author: Herring RM, Chapman AE. Journal: J Biomech; 1992 Oct; 25(10):1173-84. PubMed ID: 1400517. Abstract: An overarm throw in the sagittal plane was simulated using a three-segment model representing the upper arm, forearm and hand plus ball. Torque inputs at each joint were turned on at systematically varied times and maintained constant once initiated. All simulations began from identical initial conditions. The aim was to determine the sequence of onset of joint torques which gave the maximal range which the ball would travel and the maximal velocity of the ball irrespective of direction. Best throws proved to be sequential in that joint torques were turned on in a proximal to distal (P-D) temporal sequence. The P-D sequence was also demonstrated by time of peak joint angular velocities. The P-D sequence also proved to be best when segmental constants and joint torques were changed. As this sequence is a common feature of skilled throwing and striking, it is concluded that the linked segmental nature of the limb, irrespective of normal muscle characteristics, primarily predisposes the system to the use of a P-D sequence. The algebraic sign of the shoulder and elbow torques was reversed instantaneously to represent the use of antagonistic muscles. This led to increased output if performed late in the throw and in a P-D sequence. It is concluded that the use of antagonism leads to beneficial redistributions of angular velocity amongst limb segments.[Abstract] [Full Text] [Related] [New Search]