These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of advancing age on peripheral nerve regeneration. Author: Vaughan DW. Journal: J Comp Neurol; 1992 Sep 08; 323(2):219-37. PubMed ID: 1401257. Abstract: Following axotomy, the regrowth of peripheral axons takes longer in older individuals than in young ones. The present study compares the crush-induced process of degeneration and regeneration in the buccal branch of the facial motor nerve in groups of rats aged 3 months and 15 months. Observations are based on qualitative and quantitative analyses of the nerve 20 mm from the site of injury in rats 1, 2, 4, 16, 21, 28, and 56 days after crush. The buccal branch is purely motor and contains a unimodal population of about 1,600 axons commonly in a single fascicle. During the first 28 days post crush (dpc) in the 3-month animals, the progression of myelin and axon degeneration, myelin clearance, regrowth of axon sprouts, and axon maturation are relatively synchronized and uniform. In the older rats, the degeneration of myelin and axons, myelin clearance, and the appearance of axon sprouts at the site of sample are all delayed. In the younger animals, axon sprouts increase in numbers from their first appearance at 4 dpc through the 2 weeks examined following the restoration of whisking behavior. The numbers of regenerating older axons increase at a rate comparable to that in the younger animals through the time that bilaterally symmetrical whisking behavior is evident, but afterwards the number of axon sprouts decreases. At 2 months after crush the young animals have 30% more fibers in the buccal branch than control nerves, while the older animals have fewer than control numbers. In the 3-month regenerated nerve, 2 months post crush, 30% of the regenerated fibers are of very small caliber, less than 3 microns2 in cross sectional area, and typically these small axons have unusually thick myelin sheaths; the older nerves do not have such a skewed distribution of axon areas. The older regenerated axons at 2 months post crush have an unusually high density of microtubules compared to the younger regenerated ones (and controls), and the ratio of neurofilaments to microtubules is very low. The conclusions are that motor neurons in older animals regenerate damaged axons after a delay not apparent in the young; the strong regenerative response apparent initially in animals of both age groups is not maintained in the older animals; and the relationship between the numerical density of cytoskeletal elements and the axon cross-sectional area deviates from normal in the regenerated axons of the older animals.[Abstract] [Full Text] [Related] [New Search]