These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of cholecystokinin mRNA content in rat striatum: a glutamatergic hypothesis. Author: Ding XZ, Mocchetti I. Journal: J Pharmacol Exp Ther; 1992 Oct; 263(1):368-73. PubMed ID: 1403798. Abstract: Changes in the cholecystokinin (CCK) mRNA content in rat striatum after the administration of specific glutamate and dopamine (DA) receptor agonists and antagonists were investigated. MK-801 (1 mg/kg i.p.), a selective noncompetitive N-methyl-D-aspartate (NMDA)-sensitive glutamatergic receptor antagonist, but not 6-cyano-7-nitroquinoxaline-2,3-dione (1.1-9.2 micrograms i.c.v.), a competitive non-NMDA glutamatergic receptor antagonist, produced a time- and dose-dependent decrease in striatal CCK mRNA. The maximum inhibition (50%) was observed after a daily treatment for 1 week with MK-801 (1 mg/kg). The activation of NMDA receptors by a single injection of NMDA (1.4 micrograms i.c.v.) elicited an 80% increase in CCK mRNA in rat striatum 8 hr after the injection. These data suggest that glutamate exerts a tonic regulation on striatal CCK mRNA, mainly through NMDA-sensitive glutamatergic receptors. B-HT 920, a DA D2 receptor agonist and benztropine, a DA uptake blocker, increased striatal CCK mRNA. This increase was partially blocked by the concomitant administration of MK-801. Moreover, the DA receptor antagonist haloperidol, at a dose that per se failed to change CCK mRNA (0.3 mg/kg i.p.), partially blocked the increase in CCK mRNA elicited by NMDA. Similarly, the NMDA effect was attenuated in rats with a 6-hydroxydopamine-induced nigrostriatal lesion. Our findings suggest that in rat striatum a complex DA-glutamate interaction tonically regulates CCK expression via D2 and/or NMDA receptor activation.[Abstract] [Full Text] [Related] [New Search]