These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of testosterone and bovine follicular fluid on concentrations of luteinizing hormone and follicle-stimulating hormone in plasma of castrated rams that are homozygous carriers or non-carriers of the Booroola fecundity gene. Author: Price CA, Hudson NL, McNatty KP. Journal: J Reprod Fertil; 1992 Aug; 95(3):947-57. PubMed ID: 1404107. Abstract: Castrated adult FecBFecB and Fec+Fec+ Booroola rams were injected with charcoal-treated bovine follicular fluid (bFF) (a source of inhibin-like activity) or given testosterone implants to examine whether the fecundity gene (FecB) influences sensitivity to negative feedback hormones in males. Mean concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not differ between genotypes before treatment. In Expt 1, injections of 5 ml bFF, but not of 1 ml (each given four times at intervals of 8 h), significantly (P < 0.05) depressed concentrations of LH and FSH, but there was no effect of genotype. After treatment, gonadotrophin concentrations returned to pretreatment values and for 2-2.5 days scaled (divided by pretreatment mean) LH values (235 +/- 49 for FecBFecB and 96 +/- 26% for Fec+Fec+ rams; P < 0.05) and scaled FSH values (106 +/- 5 for FecBFecB and 85 +/- 5% for Fec+Fec+ rams; P < 0.05) were significantly higher in FecBFecB than in Fec+Fec+ rams in the group that received 5 ml bFF. Irrespective of genotype, treatment with 5 ml bFF did not reduce mean FSH to concentrations observed in testis-intact rams. In Expt 2, Silastic envelopes were implanted subdermally to give physiological or supraphysiological circulating concentrations of testosterone. Both doses significantly reduced scaled LH values in a biphasic manner, such that there was an initial suppression followed by a short-lived increase. During the initial period of suppression in the lower dose group, mean scaled LH values were significantly higher in FecBFecB than in Fec+Fec+ rams (48.3 +/- 7.5 versus 23.1 +/- 5.5%; P < 0.05). Low doses of testosterone decreased LH pulse frequency in both genotypes but decreased (P < 0.05) pulse amplitude and mean concentrations in the Fec+Fec+ animals only. In nonimplanted control rams, mean LH concentrations (in samples taken every 10 min for 12 h) were significantly lower in FecBFecB than in Fec+Fec+ rams (0.6 +/- 0.2 versus 1.3 +/- 0.1 ng ml-1; P < 0.05). The mean FSH response to testosterone was not related to genotype. These data suggest that expression of the FecB gene results in an altered sensitivity of the pituitary gland to changes in negative feedback from testicular hormones and that, irrespective of genotype, neither testosterone nor inhibin-like activity alone can fully control FSH secretion in castrated rams.[Abstract] [Full Text] [Related] [New Search]