These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of vestibular and proprioceptive inputs for human self-motion perception.
    Author: Hlavacka F, Mergner T, Schweigart G.
    Journal: Neurosci Lett; 1992 Apr 13; 138(1):161-4. PubMed ID: 1407657.
    Abstract:
    Human perception of horizontal self(body)-motion in space was studied during various combinations of vestibular and leg-proprioceptive stimuli in the dark. During sinusoidal rotations of the trunk relative to the stationary feet (functionally synergistic combination) the perception was almost veridical over the frequency range tested (0.025-0.4 Hz). This finding suggested a dominance of the proprioceptive over the vestibular input, since the quantitative aspects of the perception (gain, phase, and detection threshold): (a) closely resembled those of the proprioceptive foot-to-trunk perception, and (b) clearly differed from those of the vestibular self-motion perception. However, when using other combinations, the self-motion perception changed in a monotonous way as a function of the two inputs, indicating that the two inputs do interact in a linear way. In a model of these findings the interaction occurs in two stages: (1) summation of a vestibular trunk-in-space signal and a (dynamically matched) proprioceptive foot-to-trunk signal yields an internal representation of foot support motion in space; (2) superposition of the latter by an almost ideal proprioceptive trunk-to-foot signal results in a representation of trunk-in-space motion (essentially proprioception-dependent and ideal when the feet are stationary).
    [Abstract] [Full Text] [Related] [New Search]