These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: COMPONENTS OF GUINEA PIG COMPLEMENT. I. SEPARATION OF A SERUM FRACTION ESSENTIAL FOR IMMUNE HEMOLYSIS AND IMMUNE ADHERENCE.
    Author: NISHIOKA K, LINSCOTT WD.
    Journal: J Exp Med; 1963 Nov 01; 118(5):767-93. PubMed ID: 14087621.
    Abstract:
    Employing sheep erythrocytes sensitized by antibody and the first and fourth components of complement (EAC'1,4), in such a manner as to prevent the development of immune adherence (I-A) reactivity during preparation, four separate substances required for the conversion of EAC'1,4,2 to the final damaged state (E*) were identified in whole guinea pig serum by cellulose chromatography, and tentatively termed C'3c, C'3b, C'3a, and C'3d. I-A reactivity was induced in EAC'1,4,2 after interaction with only one of these four substances, C'3c. A detailed comparison of the effects of heat, hydrazine, low pH, freezing, absorption by immune complexes, and elution from cellulose columns indicated that this same substance which was capable of imparting I-A reactivity to EAC'1,4,2 was also essential for immune hemolysis. Other experiments showed that I-A-reactive cells prepared either by treating EA with different concentrations of whole C' at 0 degrees C, or by treating EAC'1,4,2 with C'3c, underwent lysis by C'2 + C'3b + a + d in proportion to the amount of whole C' or of C'3c used to make the cells reactive in I-A. These data provide strong evidence that a single factor, C'3c, is required both for the conversion of EAC'1,4,2 to an I-A-reactive complex (EAC'1,4,2,3c) and for the lysis of EAC'1,4,2 by C'3b + a + d. C'3c is the only one of the components studied which can induce I-A reactivity, and is the first to react with EAC'1,4,2. Formation of EAC'1,4,2,3c proceeds even at 0 degrees C, but is much more rapid at elevated temperatures, showing a maximum in from 5 to 15 minutes at 37 degrees or 30 degrees C respectively. Prolonged incubation at these temperatures results in a decline in hemolytic reactivity without a noticeable effect on I-A. This loss was resolved into three phenomena: (a) a rapid loss of ability of SAC'1,4,2,3c to react with C'3b, presumably as a result of decay of the C'2 moiety in the complex, which is readily reversed by addition of fresh C'2; (b) a slow, irreversible spontaneous inactivation of SAC'1,4,2,3c; (c) a moderately rapid, irreversible inactivation of SAC'1,4,2,3c by some factor present in C'3c preparations.
    [Abstract] [Full Text] [Related] [New Search]