These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between radiation and drug damage in mammalian cells. VI. Radiation and doxorubicin age-response function of doxorubicin-sensitive and -resistant Chinese hamster cells.
    Author: Zhang Y, Sweet KM, Sognier MA, Belli JA.
    Journal: Radiat Res; 1992 Oct; 132(1):105-11. PubMed ID: 1410265.
    Abstract:
    A comparative study of the radiation and/or doxorubicin (DOX) survival response for synchronous populations of Chinese hamster V79 cells and two DOX-resistant variants (77A and LZ-8) was performed. The greatest cellular radiation sensitivity was observed in mitosis, while the greatest resistance was observed during late S phase for the three cell lines. The variation in radiation response throughout the cell cycle was expressed as a change in the width of the shoulder of the survival curves (Dq) with little change in D0. This suggests that each phase of the cell cycle has a different capacity for accumulation of radiation injury. The radiation age-response function for the three cell lines revealed that 77A and LZ-8 cells were more radiosensitive than V79 cells throughout the cell cycle. Exposure of synchronous populations to DOX (1.84 microM for V79, 9.21 microM for 77A, and 921 microM for LZ-8) for 1 h as a function of cell cycle phase revealed that V79, 77A, and LZ-8 cells exhibited the greatest sensitivity to DOX in mitosis and the most resistance to DOX during S phase, as indicated by the differences in the slope of the initial component of the survival curve. Levels of P-glyco-protein (P-gp) are probably not a factor contributing to DOX age-response function since P-gp levels remain constant throughout the cell cycle in all three cell lines. Synchronous populations of V79, 77A, and LZ-8 cells sequentially treated with DOX and radiation at various cell cycle phases were also analyzed. The results showed that the interaction between radiation and DOX damage resulted in a reduced cellular capacity for the accumulation of radiation damage throughout the cell cycle, as indicated by a decrease in the width of the shoulder of the survival curve. Overall, both DOX-sensitive V79 cells and DOX-resistant 77A and LZ-8 cells exhibited (1) a similar age-response function for radiation or DOX, and (2) no differences in the effects of DOX on radiation-induced damage throughout the cell cycle. These results indicate that acquired resistance to DOX associated with increased levels of P-gp in the cell membrane did not appear to affect the age-response function for radiation or DOX, and the nature of the interaction between damage caused by radiation and DOX was also not affected.
    [Abstract] [Full Text] [Related] [New Search]