These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ANF-induced modulation of ADH-release in the rabbit and Pekin duck. Author: Schütz H, Gray DA, Gerstberger R. Journal: Prog Brain Res; 1992; 91():63-8. PubMed ID: 1410435. Abstract: The atrial natriuretic factor (ANF) as an osmoregulatory hormone causes a reduction of extracellular fluid volume primarily through stimulation of renal and extrarenal water and sodium elimination. Consequently, ANF counteracts the renin-angio-tensin II-aldosterone (RAAS) and the antidiuretic hormone (ADH) systems at their target organ level. The possible direct interaction of ANF with the hypothalamo-neurohypophyseal ADH system was investigated in conscious ducks and rabbits during conditions of eu- and dehydration. In euhydrated animals, the plasma concentration of ADH remained unchanged during the systemic infusion of species-specific ANF, whereas in dehydrated rabbits but not ducks, the plasma concentration of ADH was significantly decreased. These differences in ADH modulation were supported by the localization of binding sites for radiolabeled ANF at the sites of ADH release, the median eminence (ME) and neurohypophysis (NH) of the rabbit but not duck brain, using receptor-autoradiography. For both species, circumventricular organs lacking a functional blood-brain barrier (BBB) such as the subfornical organ (SFO), the organum vasculosum of the laminae terminalis (OVLT), the pineal and the choroid plexus (ChP), as well as the ependymal lining of the third ventricle (VIII) were labeled specifically. Within the BBB, binding sites for ANF could not be detected in the ADH-synthesizing paraventricular (PVN) and supraoptic nuclei (SON) of either species, however, sites were observed in the anterior median nucleus of the hypothalamus (AM) of the duck brain. In the AM as well as the PVN and ME, the existence of a brain-intrinsic ANF system could be demonstrated for the Pekin duck using immunocytochemistry.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]