These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidative metabolism of cinnarizine in rat liver microsomes. Author: Kariya S, Isozaki S, Narimatsu S, Suzuki T. Journal: Biochem Pharmacol; 1992 Oct 06; 44(7):1471-4. PubMed ID: 1417969. Abstract: The oxidative metabolism of cinnarizine (CZ) [1-(diphenylmethyl)-4-(3-phenyl-2-propenyl)-piperazine] to 1-(diphenylmethyl)piperazine (M-1), 1-(diphenylmethyl)-4-[3-(4'-hydroxyphenyl)-2-propenyl]piperazine (M-2), benzophenone (M-3) and 1-[4'-hydroxyphenyl)-phenylmethyl]-4-(3- phenyl-2-propenyl)piperazine (M-4) has been studied in rat liver microsomes. In Wistar rats, kinetic analysis revealed sex differences (male > female) in the Km values for formation of all the metabolites and the Vmax values for the formation of M-1, M-3 and M-4. The reactions required NADPH, and were inhibited by carbon monoxide and SKF 525-A. Only M-2 formation was suppressed by sparteine or metoprolol, and was significantly lower in female Dark Agouti rats than in Wistar rats of both sexes. The results suggest that CZ is oxidized by cytochrome P450, and M-2 formation is related to debrisoquine/sparteine-type polymorphic drug oxidation.[Abstract] [Full Text] [Related] [New Search]