These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen, by rabbit nasal microsomes and cytochrome P450s NMa and NMb. Author: Hong JY, Ding X, Smith TJ, Coon MJ, Yang CS. Journal: Carcinogenesis; 1992 Nov; 13(11):2141-4. PubMed ID: 1423886. Abstract: Rabbit nasal olfactory and respiratory microsomes were found to catalyze the alpha-hydroxylation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with specific activities of 262 and 136 pmol/min/mg protein in the formation of keto aldehyde, and of 318 and 190 pmol/min/mg protein in the formation of keto alcohol respectively. The formation of NNK-N-oxide was observed in experiments with rabbit olfactory and respiratory microsomes, but not with rat nasal microsomes. However, the rat nasal microsomes had higher activity in catalyzing the alpha-hydroxylation of NNK. In a reconstituted system, rabbit P450NMa, a major constitutive P450 isozyme in nasal microsomes, displayed high activities in the formation of the keto aldehyde and the keto alcohol with apparent Km values of 15 and 9 microM respectively. In comparison, rabbit olfactory specific P450NMb had a low activity in catalyzing the formation of keto aldehyde (Km = 186 microM) and no activity in the formation of keto alcohol. The P450NMa-catalyzed oxidation of NNK was inhibited by nicotine and diallyl sulfide. Kinetic studies indicated that nicotine is a competitive inhibitor. These results demonstrate that enzymes in rabbit nasal microsomes, especially P450NMa, efficiently catalyze the bioactivation of NNK.[Abstract] [Full Text] [Related] [New Search]